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Abstract-A theoretical study is made on the onset of the Marangoni convection in the horizontal layer 
of an electrically conducting liquid, to which a vertical temperature gradient and a magnetic field are applied. 
The analytical solution is obtained for the critical condition of the onset of the Marangoni convection in 
an infinite liquid layer, and the numerical analysis is carried out for a finite liquid layer confined in a 
circular cylindrical container. The effects of the magnetic field, the Biot number at the free surface and the 
aspect ratio of the liquid layer are made clear. The asymptotic behavior of the critical Marangoni number 
for the large Hartmann number is also obtained. It is found that both the critical Marangoni number and 
the number of roll cells which generate at a marginal state increases with the intensity of the magnetic field, 
and that the effect of the aspect ratio of the liquid layer of both the critical Marangoni number and the 
velocity and temperature field becomes small as the magnetic field is intensified. It also becomes clear that 
the rolls are generated when the magnetic field is inclined, while the Bknard-type cells are generated under 

vertical magnetic field in the case of an infinite liquid layer. 

INTRODUCTION 

NATURAL convection driven by the gradient of an 
interfacial or surface tension due to a non-uniform 
iemperature distribution is called thermocapillary or 
Marangoni convection. Such a convective flow gives 
rise to serious problems in several cases, for example, 
in crystal growth from a melt. It is often requested 
to suppress the onset of convection. Since buoyancy 
driven convection is reduced under microgravity con- 
dition, Marangoni convection, in particular, is sup- 
posed to become more important and have a decisive 
effect on crystal growth in space, which has been stud- 
ied actively in recent years [l]. When the temperature 
gradient is imposed vertically on the horizontal liquid 
layer the top surface of which is free and cooled and 
the bottom is on a heated rigid wall, the Marangoni 
convection occurs under a certain critical condition. 
Such an instability problem in an infinite liquid layer 
was first analyzed by Pearson[2] and Nield [3] who 
investigated the effect of buoyancy on the onset of 
Marangoni convection. 

When a magnetic field is imposed on an electrically 
conducting liquid, the liquid motion is suppressed 
because of the interaction between the induced electric 
current and the external magnetic field [4]. The 
magnetic field, therefore, is considered to be an 
effective means for suppressing the onset of con- 
vective motion so far as the liquid is electrically 
conductive. 

Convective instability induced by buoyancy in a 
magnetic field has been studied by Chandrasekhar [5] 
and the instability problem of Marangoni convection 
in a magnetic field has been discussed by Nield [6] and 
Rudraiah et al. [7] for the infinite liquid layer. 

However, the instability problem in a finite liquid 
layer confined in a container may become more impor- 
tant in practical cases, which makes the problem more 
complicated. 

The onset of buoyancy convection in a box, the 
top and bottom surfaces of which are rigid, has been 
analyzed by Davis [8] and developed by Catton [9] 
who has used the complete set of trial functions. The 
onset of Marangoni convection and of buoyancy con- 
vection in a circular cylindrical container has been 
analyzed in a sophisticated way by Vrentas et al. [lo], 
though the combined case has not been considered. 
These authors, however, have not investigated the 
effect of a magnetic field. 

The objective of the present study is to make clear 
the effects of the magnetic field and the aspect ratio 
of the liquid layer on the onset of pure Marangoni 
convection. 

A theoretical study is carried out on the instability 
problem of pure Marangoni convection in a hori- 
zontal layer of an electrically conducting liquid. The 
analytical solution is obtained for the case of the infi- 
nite liquid layer, and the numerical analysis is carried 
out for the finite liquid layer. 

The effects of the Hartmann number, the orien- 
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NOMENCLATURE 

aspect ratio, R,/L 
Biot number, equation (16) 
magnetic field 
intensity of initial magnetic field 
non-dimensional magnetic field, h/h,, 
Z-component of non-dimensional 
magnetic field 
non-dimensional wave number 
depth of liquid layer 
Hartmann number, equation (9) 
Marangoni number, equation (17) 
critical Marangoni number 
defined by equation (7) 
defined by equation (6) 
radius of container 
temperature 
temperature at bottom wall 

T, temperature at free surface 

: 
velocity 
non-dimensional velocity, v/(K/L) 

V* Z-component of non-dimensional 
velocity. 

Greek symbols 
c( heat transfer coefficient at the free surface 

dynamic viscosity 
;I non-dimensional temperature 
K thermal diffusivity 

P permeability 
V kinematic viscosity 
p0 density 
0 electrical conductivity 

or temperature coefficient of surface tension. 

tation of the magnetic field, the Biot number at the 
free surface, and the aspect ratio of the liquid layer 
are discussed. 

Momentum equation 

A2Vz+ Q{cosS (a/aZ)+sin6(3/&X’)}AH, = 0. (2) 

Energy equation 

V,+Ae = 0. (3) 

Magnetic field equation 

divH = 0 (4) 

{(cos s(r?/aZ) + sin &a/ax))} V, + Pr,AH, = 0 (5) 

where the coordinates, the velocity, the temperature 
and the magnetic field are nondimensionalized by ref- 
erence quantities L, K/L, ITw - T,I and h,,, respectively. 
Parameters Q and Pr, are defined as 

Q = (.DL~~:)/(P,~ (6) 

Pr, = l/(aprc). (7) 

The momentum equation can be transformed into 
a more convenient form by eliminating H, from equa- 
tions (2) and (5) 

GOVERNING EQUATIONS 

The onset of convective instability in a horizontal 
liquid layer as shown in Fig. 1 is considered. The 
perturbation equations (l)-(5) are obtained from the 
magnetohydrodynamic equations which are derived 

’ on the basis of the following assumptions. 

(a) Liquid is incompressible and the Boussinesq 
approximation is valid. 

(b) Magnetic permeability and other physical prop- 
erties of liquid are constant. 

(c) Liquid is Newtonian. 
(d) Electromagnetic field obeys the Maxwell equa- 

tions. 
(e) Magnetic field is uniform and the angle of incli- 

nation from the vertical is denoted as 6 (Fig. 1). 
(f) Instability occurs as a steady convection. 

Continuity equation 

divV = 0. (1) 

I Magrdic field 

/‘/’ / / 
Rigid heat-jcyfer/s&ce’ / 

/ / 

FIG. 1. Horizontal layer of an electrically conducting liquid The analysis can be made in terms of two-dimen- 
under magnetic field. sional periodic waves for the case of an infinite liquid 

A2Vz-M2{cos6(~/dZ)+sin~(a/i3X)}‘Vz = 0 (8) 

where M is the Hartmann number defined below 
which represents the intensity of the magnetic field 
relative to the viscous effect 

M2 = Q/Prm = (hL2ht)/(pov). (9) 

Equations (l), (3), (4) and (8) are the required per- 
turbation equations. 

ONSET OF MARANGONI CONVECTION IN 

THE INFINITE LIQUID LAYER 

Analysis of normal modes 
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layer as analyzed by Chandrasekhar [5] and Pearson 

[21. 
The perturbed variables V, and 0 can be expressed 

as 

(~)=(~~i) exp [i(k,X+k, Y)] (10) 

where k = ,/(k: +k:) is the wave number of the dis- 
turbance and i represents the imaginary unit. 

The following equations are derived by substituting 
equation (10) into equations (8) and (3) : 

[(D2-k2)2-M2(cos6D+ik,sin6)2]F(Z) = 0 (11) 

F(Z) + (D* -k2)G(Z) = 0 (12) 

where D” = d”/(dz”). 
The equation for G(Z) is obtained by eliminating 

F(Z) from equations (11) and (12) 

[(D* - k2) 3 - M * (cos SD + ik, sin 6) * 

x (D2-k2)]G(Z) = 0. (13) 

The corresponding boundary conditions are 

G = (D*-k2)G = D(D2-k2)G = 0 at Z = 0 

(14) 

(D2-k2)G = 0, DG = -BiG, 

D2(D2-k*)G = Mak2G at Z= 1 (15) 

where Bi and Ma are the Biot number and the Maran- 
goni number, respectively 

Bi = crL/l (16) 

Ma = (u,ATL)/(rcp). (17) 

The Biot number represents the heat-transfer con- 
dition at the free surface where the heat-transfer 
coefficient is nondimensionalized by the thermal con- 
ductivity of the liquid and the depth of the layer. 
The Marangoni number represents the surface tension 
force relative to the viscous effect. 

Onset of Marangoni convection under vertical magnetic 
field 

Let us consider at first the case when the magnetic 
field is imposed in a vertical direction, namely 6 = 0 
(Fig. 1). The effect of the inclined magnetic field will 
be discussed later. 

In this case, equation (13) can be solved analytically 
under boundary conditions (14) and (15) and the 
critical Marangoni number Ma, is obtained as 

Ma, = (M*C,)/(C, sinhk+C,coshk+C,) (18) 

where 

C, = {(ksinhk+Bicoshk)C, 

- (k2M)/(J(M2 +4k’)(cosh J(M~ 

+4k2)-l)+BiC,}/(kcoshk 

+ Bi sinh k) 

C2 = fisinhu-asinhj? 

C3 = (l/2) (J(M2+4k2) sinhM 

-MsinhJ(M2+4k2)) 

tl= (l/2) J(M+(M2+4k2)) 

/3 = (l/2) (M-J(M2+4k2)). 

When M2 + 0, equation (18) agrees with the solu- 
tion obtained by Pearson [2] by asymptotic analysis. 

Equation (18) represents the critical Marangoni 
number corresponding to a certain wave number. 
Therefore, the minimum value against the change of 
wave number represents the real critical Marangoni 
number and the corresponding wave number becomes 
the critical wave number. Hereafter, the minimum 
critical Marangoni number is referred to simply as the 
critical Marangoni number. The critical Marangoni 
number and the critical wave number are, respectively, 
denoted by Ma, and k,. 

The critical Marangoni number and the critical 
wave number are listed in Table 1. 

When M* -+ co and Bi -+ 0, the critical wave num- 
ber and the critical Marangoni number are expressed 
as the results of asymptotic analysis 

k, + {(1/2)M} “* (19) 

(M* -+ oo,Bi+0) 

Ma, + M*. (20) 

The expressions for k, and Ma, for the case of M2 + 
co and Bi -+ co are obtained in the same way 

k, -+ (1/4)M (21) 

(M*+co,Bi-,co) 

Ma, + 8 Bi M. (22) 

In the case of buoyancy convection, the critical 
Rayleigh number becomes independent of the Biot 
number at the free surface when M2 is sufficiently 
large [5, 111. 

On the other hand, the dependence of the critical 
Marangoni number on Bi is crucial as Nield [6] 
has pointed out, though the expressions obtained by 
Nield are slightly different from equations (20) and 

(22). 
The critical Marangoni number, however, should 

become independent of Bi when M2 is extremely large 
compared with Bi, which will be discussed below. 

Figure 2 shows the dependence of the critical 
Marangoni number on the squared Hartmann 
number. The broken lines in the figure indicate the 
critical Marangoni number corresponding to zero 
magnetic field and the relations expressed by equa- 
tions (20) and (22) are also indicated in the figure. 

The effect of the magnetic field is negligibly small 
when the squared Hartmann number is smaller than 
unity. The effect becomes remarkable when 
M2 > 100. The critical Marangoni number increases 
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Table 1. Critical Marangoni number and critical wave number in infinite liquid layer under vertical magnetic field 

Bi 
M2 0 0.01 0.1 1.0 10.0 100.0 1000.0 10000.0 

0 

0.1 

1.0 

5.0 

10.0 

20.0 

50.0 

100.0 

200.0 

500.0 

1000.0 

2000.0 

5000.0 

10 000.0 

20000.0 

50 000.0 

100 000.0 

Ma, = 79.6067 79.9913 83.4267 
k, = 1.993 1.997 2.028 

79.8645 80.2500 83.6933 
1.995 1.999 2.030 

82.1724 82.5657 86.0789 
2.015 2.018 2.050 

92.1834 92.6100 96.4202 
2.094 2.098 2.132 

104.223 104.688 108.844 
2.181 2.185 2.220 

127.111 127.647 132.431 
2.325 2.329 2.367 

189.873 190.586 196.954 
2.630 2.635 2.680 

284.222 285.177 293.686 
2.959 2.965 3.017 

455.762 457.107 469.090 
3.377 3.384 3.447 

919.777 922.027 942.057 
4.080 4.090 4.172 

1632.47 1635.91 1666.47 
4.745 4.757 4.858 

2974.82 2980.17 3027.77 
5.547 5.561 5.688 

6773.06 6782.92 6870.42 
6.863 6.882 7.050 

12 830.2 12 846.0 12 986.5 
8.092 8.116 8.324 

24 562.5 24588.1 24815.5 
9.565 9.595 9.850 

58 678.4 58 727.4 59 161.4 
11.963 12.001 12.335 

116.127 413.440 3303.83 32 170.1 
2.246 2.743 2.976 3.010 

116.467 414.409 3310.76 32 236.4 
2.249 2.746 2.980 3.014 

119.505 423.051 3372.42 32 826.7 
2.271 2.777 3.016 3.051 

132.616 459.903 3633.40 35 321.5 
2.364 2.903 3.165 3.204 

148.260 503.007 3934.80 38 196.4 
2.465 3.042 3.331 3.375 

177.691 581.952 4476.93 43351.1 
2.634 3.278 3.617 3.670 

256.912 784.055 5815.08 55987.1 
2.995 3.800 4.271 4.352 

373.432 1063.01 7568.02 72 362.6 
3.391 4.396 5.058 5.183 

580.792 1527.05 10 302.8 97 529.2 
3.901 5.201 6.199 6.415 

1127.31 2646.48 16268.7 150 877 
4.776 6.658 8.519 9.049 

1947.33 4188.12 23 560.6 213312 
5.615 8.127 11.221 12.334 

3462.53 
6.637 

7663.45 
8.325 

14 252.8 
9.909 

26 855.6 
11.808 

63 035.1 
14.904 

6833.01 34 624.5 303 050 
9.984 15.072 17.239 

13581.9 58 779.7 483 849 
13.170 22.292 26.950 

23 444.8 89 249.6 693 281 
16.256 29.676 34.988 

41280.8 137798 943 258 
20.047 39.448 44.874 

89 568.2 - - 
26.359 - - 

114213 114293 115005 121338 163 789 

14.187 14.234 14.640 17.780 32.333 - 

320 827 
3.014 

321487 
3.018 

327 363 
3.055 

352 196 
3.208 

380 805 
3.380 

432081 
3.676 

557 685 
4.360 

720 264 
5.197 

969 686 
6.439 

1.49654 x lo6 
9.115 

2.10960 x lo6 
12.482 

2.98388 x lo6 
17.548 

4.72266 x lo6 
27.678 

6.70356 x lo6 
35.931 

- 

- 

- 

infinitely with the increase of M2. It is clear that 
relation (20) is valid for M2 + co, Bi --f 0 and relation 
(22) also holds good for large M* and Bi, though 
relation (22) is a slight overestimation. 

Although relations (20) and (22) cross at 
M2 = 64Bi2, the actual instability curves cannot cross 
each other. Relation (20) holds again when M2 is 
extremely large compared with a given large Biot 
number, that is, M2 > 64Bi’. In other words, each 
of the curves approaches the relation Mu, + M2 for 
extremely large M2, even if the Biot number is 
large. 

Figure 3 shows the dependence of the critical wave 
number on the squared Hartmann number. The effect 
of the magnetic field appears when M* > 100. The 
wave number increases infinitely with the increase of 
M2. In other words, the distance between the cells 

becomes shorter as the intensity of the magnetic field 
increases. 

Figure 4 shows the dependence of the critical 
Marangoni number on the Biot number. The critical 
Marangoni number increases in proportion to Bi 

when Bi is large. In the case of buoyancy convection 
[3,5,1 I] the critical Rayleigh number has a finite value 
even if the Biot number is infinite. On the contrary, the 
onset of Marangoni convection is completely sup- 
pressed when Bi is infinite. 

Figure 5 shows the dependence of the critical wave 
number on the Biot number. The critical wave num- 
bers approach constant values when the Biot number 
is either very small or very large and they change 
greatly in the intermediate region. The rate of change 
in that region becomes large with the increasing inten- 
sity of the magnetic field. The flow patterns become 
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der zem -tic field 

--- e4.(20) 

---- m.(z) 

IO- 

IO” a 4 h ’ ’ 
w 10-j 10” 10’ IO’ IO’ 10’ 10‘ IO’ IO’ 10’ 

FIG. 3. Dependence of critical wave number on squared 
Hartmann number, 

FIG. 2. Dependence of critical Marangoni number on 
squared Hartmann number. 

very sensitive to the Biot number as the Hartmann where 
number increases. 

tl = (l/2) [(M*+C$) +icCi] 

Effect of orientation of magnetic field 
When the magnetic field is inclined from the verti- 

cal, the new parameters M* and C are used, which 
were introduced by Chandrasekhar [5] 

Lu* = Mcos 6 (23) 

C=k,tan6. (24) 

Equation (13) is rewritten as below by using M* 
and C 

[(DZ-k2)3-M*2(D+iC)2(D2-k2)]G(Z) = 0. 

(25) 

The critical condition for the onset of Marangoni 
convection is expressed as follows by solving equation 
(25) under boundary conditions (14) and (15) : 

/3 = (l/2) [(M*-a,)-&] 

LX, = (1/J2),/(&14**+4k2)*+ 16M**C*) 

+(M**+4k*)) 

cli = (1/,/2),/(,/((M*2+4k2)2+16M*ZC2) 

+(M**+4k*)) 

and the overbar - on the variable represents the 
conjugate complex number. 

Table 2 shows the critical Marangoni number and 
the critical wave number for A4** = 10 where C is 
changed from 0 to 10. 

The critical Marangoni number corresponding to 
C = 0 is always the smallest even if IV*’ and Bi are 
changed. This means that the rolls the axes of which 
are parallel to the horizontal component of the mag- 

Mak*e’ A4ak2 emk [iUak*--a*(or*-k*)]e’ [Mak*-oS*(8*-k*)]e-” 

(Bi+ k) ek (Bi- k) epk (Bi+a) e’ (Bi- cI) e-” 

det 0 0 (cc*-k*)e” (&* _k*) e-” 

0 0 cr(cr’ -k*) -oS(oS*-k2) 

0 0 a’-k* 072 -k* 

1 1 1 1 

[A4ak2-~Z(j32-k2)]e~ [Mak2-/?(~-kZ)]e-B 

(Bi+B) $ (Bi-fi e-p 

(/3*-k*)@ (B*-k*)e-f 

I 

=0 (26) 

B(B* -k*) -B(B*-k’) 

/3*-k* 8*-k* 

1 1 



290 T. MAEKAWA and I. TANASAWA 

10' 

1 _--_--- Cdlical MBangmi number 

fa Bi= 0 

M'=O 

101 
10-I lo-’ 10’ 10” 10’ 10’ 10’ 10’ 

-1 
10' 

Bid number Bi 

FIG. 4. Dependence of critical Marangoni number on Biot 
number, 

netic field are generated when the magnetic field is 
inclined, while the Benard-type cells are generated 
when the magnetic field is perpendicular to the hori- 
zontal liquid layer. 

It is found that the effect of inclined magnetic field 
on the flow pattern of Marangoni convection is similar 
to that of the buoyancy convection analyzed by Chan- 
drasekhar [S]. The horizontal component does not 
have any effect at all on the critical Marangoni 
number. What is effective in suppressing the onset of 
the Marangoni convection is the vertical component 
of the magnetic field, as in the case of buoyancy con- 
vection. The results shown in Figs. 2-5 are applicable 
for the case of an inclined magnetic field only if M2 
is replaced by M* 2 

ONSET OF MARANGONI CONVECTION IN A 

CIRCULAR CYLINDRICAL CONTAINER 

The onset of convective instability in a circular cyl- 
indrical container as shown in Fig. 6 is considered. 

A vertical temperature gradient, decreasing from 
the bottom toward the top, and a vertical magnetic 
field are imposed on the liquid layer in the container, 
the side wall of which is thermally insulated. 

4- 
g __-// 

2. r=: 

M’= 0 

0 / 
10 s lo-' lo-’ 10’ 10’ IO’ 10’ 10’ 10’ 

Bid “umber Bi 

FIG. 5. Dependence of critical wave number on Biot number. 

Table 2. Critical Marangoni number and criti- 
cal wave number in inclined magnetic field 

Bi 
c 0 1 10 

0 Ma, = 104.2 148.3 503.0 
k, = 2.18 2.46 3.04 

0.5 104.6 148.8 504.3 
2.18 2.41 3.06 

1.0 105.8 150.3 508.4 
2.18 2.48 3.07 

5.0 140.4 194.0 620.0 
2.43 2.75 3.46 

10.0 223.5 295.2 851.9 
2.88 3.32 4.25 

The aspect ratio A is defined as the ratio of the 
radius of the container to the depth of the liquid layer. 

Analysis by Galerkin method 
Let us assume that the steady convection occurs as 

two-dimensional concentric rolls at a marginal state. 
Perturbation equations (3) and (8) should be ex- 

pressed by a cylindrical coordinate system in this 
case. 

Such a problem can be analyzed by the Galerkin 
method as Davis [8] and Catton [9] have done for the 
case of buoyancy convection. 

V, and 13 are expanded, respectively, with a series of 
trial functions Fi, and G, which satisfy the cor- 
responding boundary conditions 

V, = ui, F,, (27) 

0 = B,G, (28) 

where Einstein’s convection of summation is applied 
and 

61 = bo;i(RIA)f;(Z) 

G, = Jo(dV4g,(Z) 

hvn(R) = {Jn(L~))/{Jo(An)} 

- {~“(4nW)lVO(L)} 

&f,(Z) = (1 -z)z’+’ 

Gj(Z) = Z’. 

J, and Z, are the Bessel function and the modified 
Bessel function of the first kind of order n, respec- 
tively. 

1, and pm are the roots of the following equations : 

b,,,(l) = 0 (29) 

J,(KJ = 0. (30) 

The boundary conditions at the free surface, equa- 
tions (31) and (32), as shown below are not satisfied 
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Heat - t mmfer surfax 
2-R 

1 I. 

R=A 

% 

101 

FIG. 6. Electrically conducting liquid in circular cylindrical 
container. 3 

3 

10' 

yet, but will be satisfied in the surface integrals 

AV, = -MaA,,tI (31) 
10 

atZ=l 

aejaz = - BitI (32) 

where Au represents the two-dimensional Laplace 
operator related to a horizontal plane. 

The following matrix equation is obtained by sub- 
stituting equations (27) and (28) into equations (8) 
and (3) and applying the Galerkin method 

A,,-B,,-MC,, -MaA,, uij 

ASI -(A22+BiB22) )( > Bfj =O 

(33) 

where 

A,, = AF,,,,Ar;;, dv 
s ” 

A,, = s Waz)FmAIGj dS 
Z=I 

AZ2 = 
1‘ 

VGmVG,dv 
” 

B,, = 
s 

(alc3R)F,,,,,A&.j dS 
R=A 

B,z = G,, G, ds 

C,, = F,,,,,(a /aZ )Fijdv 
s 

2 .? 
” 

where the integrals with dS and dv are the surface and 
the volumetric integrals, respectively. 

Marangoni convection occurs only when the 
coefficients tlij and fiij have non-trivial solutions. The 
condition is given below 

det[(l/Ma)Z-(A,,-B,,-M*C,,)- 

xA,2(A22+BiB22)-‘A2,] = 0 (34) 

----- clitia h4am&mi mmbef 

for infiti+e liquid layer 

Bi=lOO. M’=O 

Bi=lO. M’=IW 
---- 

FIG. 7. Dependence of critical Marangoni number on aspect 
ratio. 

where Z denotes the unit matrix and the quantities 
with exponent - 1 represents the inverse matrix. 

Equation (34) is an eigenvalue equation where 
l/Ma is the eigenvalue. The Marangoni number cor- 
responding to the maximum eigenvalue for given M ‘, 
Bi and A represents the critical Marangoni number. 

RESULTS AND DISCUSSION 

Critical Marangoni numbers are listed in Table 3. 
The dependence of the critical Marangoni number 

on the aspect ratio is shown in Fig. 7 for the cases of 
Bi = 0, lo’ and 100, where broken lines indicate the 
critical Marangoni number for the infinite liquid layer. 
As is expected, the critical Marangoni number 
increases as the aspect ratio decreases since the dis- 
turbances are damped down in the vicinity of the side 

____ Critical Marangmi number 
mder rem mame!& field 

- es.(20) 

/ 

Bi=O. A=DD 

+ 10.’ lb 10’ 10’ 10’ IO’ 10’ IO’ IO’ 

squwd Iiaimal” number M’ 

FIG. 8. Dependence of critical Marangoni number on 
squared Hartmann number. 
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Table 3. Critical Marangoni number in circular cylindrical 
container 

A 
MZ 0.5 1.0 3.0 5.0 

0 174 
1 116 

10 789 
100 920 

1000 2110 

(a) Bi = 0 
204.3 86.38 
206.0 88.97 
221.1 110.9 
367.6 291.8 

1685 1653 

81.85 
84.40 

106.4 
286.8 

1640 

(al Bi=0, W-0 

0 869 
1 870 

10 885 
100 1032 

1000 2364 

(b) Bi = 1 
253.5 124.0 
255.6 127.4 
274.3 155.8 
455.3 381.5 

2030 - 

81.85 
84.40 

106.4 
286.8 Rdilm P. 

(c) Bi = 10 
0 1694 611.8 431.6 420.0 
1 1697 683.3 441.1 429.6 

10 1726 132.4 521.4 509.5 
100 2010 1198 1079 1074 

1000 4550 4250 4240 - 

Ibl Bi-0. M’=lOO 

(d) Bi = 100 
0 9642 4798 3421 3345 
1 9660 4836 3489 3413 

10 9820 5174 4045 3916 
100 11400 8260 7644 - 

1000 24 200 23380 - - 

- Velocity dimibutial 

faA-1 
______ __ A-3 

____ A=5 

___.- A-s, 

FIG. 9. Velocity distribution in container. 

wall because the boundary condition 

v, = vz = ae/aR = 0. 

However, the effect of the aspect ratio on the critical 
Marangoni number becomes smaller with the increase 
of the Hartmann number and the Biot number. 

Figure 8 shows the dependence of the critical 
Marangoni number on the squared Hartmann num- 
ber where broken lines indicate the critical Marangoni 
number under zero magnetic field. 

The difference, however, becomes small with the 
increase of the Hartmann number and the Biot num- 
ber (Fig. 9(b)), which explains why the effect of the 
aspect ratio vanishes and the critical Marangoni num- 
ber approaches that of the infinite liquid layer when 
M2 is large. The distance between the rolls becomes 
shorter and the velocity and temperature fields are 
unaffected by the existence of the side wall when M 2 
and Bi are large. 

CONCLUSION 
As mentioned previously, with the increasing inten- 

sity of magnetic field, the critical Marangoni number 
becomes independent of the aspect ratio and 
approaches the value in the infinite liquid layer. 

The distribution of the vertical component of vel- 
ocity on the horizontal plane Z = l/2 is illustrated in 
Fig. 9 for Bi = 0 where the velocity on the axis R = 0 
is normalized as 1. The velocity distribution in the 
infinite liquid layer is also indicated for comparison 
which is expressed below in the case of the cylindrical 
coordinate system 

The onset of Marangoni convection in the hori- 
zontal layer of an electrically conducting liquid has 
been studied theoretically and the following results 
have been obtained. 

(1) The effect of the magnetic field on the onset of 
Marangoni convection is negligibly small when the 
squared Hartmann number M2 is smaller than unity. 

(2) The critical Marangoni number Ma, for large 
M * is expressed by the following relations : 

Vz = J,,(k,R) (A -+ co) (35) 

where k, is the critical wave number in the infinite 
liquid layer which has been obtained in the previous 
sections. 

for small Bi, Ma, -+ M * ; 
for large Bi, Ma, -P 8Bi M (for M2 5 64Bi2) 

Ma,+ M2(forM2 2 64Bi’). 

(3) The critical Marangoni number increases in pro- 
portion to Bi when Bi is large. 

The velocity component for A = 1 is suppressed to (4) The rolls, the axes of which are parallel to the 
zero because of the effect of the side wall and it differs horizontal component of the magnetic field, are gen- 
remarkably from those for A = 3,5 and cc when the erated in the case when the magnetic field is inclined. 
Hartmann number is zero (Fig. 9(a)). (5) The effect of the aspect ratio of the liquid layer 
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on both the critical Marangoni number and the vel- 6. D. A. Nield, Surface tension and buoyancy effect in the 

ocity field vanishes at large M*. cellular convection of an electrically conducting liquid 
in a magnetic field, 2. Anqew. Math. Phvs. 17, 131-139 
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EFFET DU CHAMP MAGNETIQUE SUR L’APPARITION DE LA CONVECTION DE 
MARANGONI 

R&sum~n ttudie theoriquement I’apparition de la convection de Marangoni dans une couche horizontale 
de liquide conducteur d’electricitt, auquel on applique un gradient vertical de temperature et un champ 
magnetique. La solution analytique est obtenue pour la condition critique de l’apparition de la convection 
de Marangoni dans une couche infinie de liquide et la solution numtrique pour une couche finie liquide 
confinee dans un conteneur cylindrique. On clarifie les effets du champ magnetique, du nombre de Biot a 
la surface libre et le rapport de forme de la couche liquide. On obtient aussi le comportement asymptotique 
du nombre critique de Marangoni pour une grande valeur du nombre de Hartmann. On trouve que le 
nombre de Marangoni critique et le nombre de rouleaux qui se gentrent dans un &at marginal augmentent 
tous deux avec I’intensitt du champ magnetique, et que I’effet du rapport de forme de la couche liquide, 
du nombre de Marangoni critique et des champs de vitesse et de temperature, devient faible quand le 
champ magnetique est intensifie. 11 est clair que les rouleaux sont gtnerts quand le champ magnetique est 
incline, tandis que les cellules de type Btnard sont gin&es avec un champ magnetique vertical dans le cas 

d’une couche liquide infinie. 

DER EINFLUSS EINES MAGNETISCHEN FELDES AUF DAS EINSETZEN DER 
MARANGONI-KONVEKTION 

Zussmmenfassung-Das Einsetzen der Marangoni-Konvektion in einer horizontalen Schicht einer elek- 
trisch leitenden Fliissigkeit wird theoretisch untersucht. Dabei wird dieser Schicht ein vertikaler 
Temperaturgradient und ein magnetisches Feld aufgeprlgt. Die analytische Lijsung ergibt die kritischen 
Bedingungen fur das Einsetzen der Marangoni-Konvektion in einer unendlichen Fliissigkeitsschicht. Eine 
numerische Analyse wurde fiir eine endlich ausgedehnte Fliissigkeitsschicht in einem kreiszylindrischen 
Behllter durchgefiihrt. Die Einfliisse des magnetischen Feldes, der Biot-Zahl an der freien Oberfllche und 
des Llngenverhlltnisses der Fliissigkeitsschicht sind deutlich geworden. Das asymptotische Verhalten der 
kritischen Marangoni-Zahl bei groger Hartmann-Zahl wurde such ermittelt. Es zeigt sich, dal3 die kritische 
Marangoni-Zahl und die Zahl der Konvektionszellen, die bei einem Grenzzustand entstehen, mit der 
Intensitlt des Magnetfeldes zunehmen. Der EinfluB des Llngenverhlltnisses der Fliissigkeitsschicht auf 
die kritische Marangoni-Zahl und das Geschwindigkeits- und Temperaturfeld wird mit starker werdendem 
magnet&hen Feld kleiner. Man erkennt such, dal3 bei geneigtem Magnetfeld Konvektionszellen erzeugt 
werden, wlhrend Benard-Zellen bei vertikalem Magnetfeld im Falle einer unendlichen Fliissigkeitsschicht 

entstehen. 

BJIWIHHE MAI-HMTHOI-0 IIOJIEI HA BOWMKHOBEHHE KOHBEKHHM MAPAHI-OH&i 

AnsW’rarnss--TeoperaWcra riccnenyercn no3rimcHonemie rconBel(rnni Mapaurorm B roprrsonrananoh$ 
CJIOe 3JIeKTpOIlpOBO~HOfi NiJIKOCTU B Cnygae BepTHKWIbHOrO TeMnepaTypHOrO rp_eHTa H lTpH,IOre- 

tnin MarHHTHOrO norm. nonyveH0 aHaJIHTHYecKOe peureHHe plnn K~HTH~NKHX yCJIOBHi% B03HBKHOBeHHII 

KOHB~KIUIU MapawoHn n 6ecKoHerHoM cnoe xww3c~si, nposeneH sicnefnibxfi @JIHS mn mawpa. 

~ccJIenoBaHo WnrrrHHe MarmirHOro non& Yacna 6~0 Ha ceo6o~oii nosepxnocrr H oTsoureHnn cropo~ 

Cnon ~~OCT~.~a~eHoac~M~oT~~~Koe~oBe~eH~eKpHTH~eCRoroYHCna~apaHroHH~n 6o~mnrnx 
‘n%XJi FapTMaHa. 06napyXeH0, 'IT0 KpHTFieCKOe 'iHCJI0 Mapanromi EI KOJIHWCTBO II’ItXK B BHJ(e Bana, 

B03HHKa10WHX B npOMeq'TOqHOM COCTOKHHH, YBenHSHB~TCII C pOCTOM Hallp,DKeHHOCTH MWHHTHOrO 

nonn, a nnrinmre 0Tnontemix cropon cnon ria upnraqecroe 9ncno Mapauromr ri none crcopocr~ A ret++ 
neparypht yMeHbruaeTcn npH ynesurqeHwi HanpnzueHHocTu bfarHHTHor0 nonr. Hakeno, ~0 B cnyvae 
6ecKoHequoro cnon )I(HnKOCTH nqeirpa n Ewe Bana 06pasyrorcn npu H~OHHOM WW~HOM none, a 

KdiKH IieHapa--npHBepTHKaJlbHOM. 


